GENERAL CHARACTERISTICS

The principle of operation of these instruments is based on the drive of one or more magnetic reed contacts, placed inside of the measuring rod, by one or more floats. The only moving element is the float that moves, for buoyancy, along the measuring rod, this guarantees extreme robustness and a limited need for maintenance.

- Stainless steel - AISI 316

- Up to 6 switch points.
- Working pressure up to 50 bars depending on the used float.
- Operating ambient temperature $-30 /+55^{\circ} \mathrm{C}$ UR 90%.
- Standard working temperature $105^{\circ} \mathrm{C}$.
- Executions up to $180^{\circ} \mathrm{C}$ on request.
- Minimum degree of protection IP65.
- Built-in temperature sensors, on request. PT - PTC - NTC - Thermostat.
- ATEX $\left\langle\varepsilon_{x}\right\rangle$ Constructions (See Multipoint E - Multipoint I series)

(ERITR

FLOATS Tab. 1

ELECTRICAL CONTACTS
Tab. 2

TYPE		POWER		VOLTAGE		CURRENT	
		VA	W	AC	DC	AC	DC
SPST	3	70	50	300	350	0,5	0,7
SPST	4	80	80	250	250	1.3	1,3
SPDT	7	60	60	230	230	1	1
SPDT	7D	20	20	150	150	0,5	0,5

ELECTRICAL OUTPUT

Tab. 3

W1 IP65 Housing	W2 IP65 Housing		S1-S2 DIN IP65 Plug	$\begin{aligned} & \text { C1 - C2 - T1 } \\ & \text { Cable - Leads } \end{aligned}$			P1 - P2 Cable-gland	
Max. 5 terminals	Max. 18 terminals	$\begin{aligned} & \text { S1 } \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { DIN43650 29×29 } \\ & \text { DIN43650 15x15 } \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \\ & \mathrm{~T} 1 \end{aligned}$	Cable Cable Leads	$\begin{aligned} & L=1,5 \mathrm{~m} \\ & \mathrm{~L}=3,0 \mathrm{~m} \\ & \mathrm{~L}=1,5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { P2 } \end{aligned}$	Brass IP68 Polyamide IP67

[^0]S1-S2- P1 = Temperature class $\mathbf{R}-\mathbf{H}$

PROCESS CONNECTIONS

Installation from inside C-P-T output					Float type
06	$08$$1 / 4 "$	$\begin{gathered} 10 \\ 3 / 8 " \end{gathered}$	$\begin{aligned} & 15 \\ & 1 / 2 \prime \prime \end{aligned}$		
$1 / 8 "$					
All type of floats All type of thread					S29
					S32
					S41
					S52
Male thread					
G		C	N		
Parallel		Conical	Conical		
UNI 228/1		UNI 7/1	NPT		

Tab. 4

Installation from outside - available thread and flanges						
25	$\begin{gathered} 32 \\ 11 / 4^{\prime \prime} \end{gathered}$	$\begin{gathered} 40 \\ 11 / 2 " \end{gathered}$	$\begin{aligned} & 50 \\ & 2^{\prime \prime} \end{aligned}$	FSHX Flange	FSPX Flange	DN Flange
G	G-C-N	-	-	-	-	-
G	G-C-N	-	-	-	-	-
-	-	G-C-N	G-C-N	-	-	\bullet
-	-	-	G-C-N	-	-	\bullet
Available materials				DN - Available materials		
	S	T		C		S
AISI-316		AISI-304		Steel		AISI-316
		On request				

FLANGES Dimensions in mm .

Tab. 5

$\mathbf{1}$	NO	Contacts status in no level
$\mathbf{2}$	NC	conditions
$\mathbf{3}$	SPDT	cond

Tab. 6
The switch points $\mathrm{L} 1 \div \mathrm{L} 6$ are measured from the axis of the fitting or flange connection. General tolerances on switch points $\pm 3 \mathrm{~mm}$.

	Dimensions in mm.							
	S29		S32		S41		S52	
A min.								
A1 min.								
B								
C								
D max -								
Contacts type	3	7D	3	7D	4	7	4	7
Max. N. of contacts	6	4	6	4				

OPTION - Built-in temperature sensor

DN = UNI - DIN - ANSI Flanges

L1

On request, it is possible to install a temperature sensor located at the bottom of the rod inside the instrument.

PT100 - PT1000	PTC	NTC	TRM (Thermostat)	
EN $60751-$ IEC 751	Resistance at $25^{\circ} \mathrm{C} \leq 500 \Omega$	Resistance at $25^{\circ} \mathrm{C} 2-5-10-50-100 \mathrm{~K} \Omega$	$40^{\circ} \mathrm{C} \div 120^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}$ step	
Class B - (Class A on request)	Temperature $60^{\circ} \mathrm{C} \div 120^{\circ} \mathrm{C}$	Precision $\pm 5 \% / \pm 3 \%$ (on request)	Precision $\pm 5 \%$	Differential $10^{\circ} \mathrm{C} \pm 4^{\circ} \mathrm{C}$

NOMENCLATURE

L2	S41	4	0350/0100	S	50	G	S	W1	L	122	L1 -14		
-													Number of contacts L1 \div L4
	\bullet											Tab. 1	Float
		\bullet										Tab. 2	Electrical contact
			\bullet									-	Length LO in mm. / Length A in mm. (See drawing)
				\bullet								Tab. 4	Rod material
					\bullet							Tab. 4	Process connection dimension
						-						Tab. 4	Process connection thread
							\bullet					Tab. 4	Process connection material
								\bullet				Tab. 3	Electrical output
									-			Tab. 1	Temperature class
										-		Tab. 5	Wiring and contact status
											-	Tab. 6	Switch points (mm)

[^0]: With heatsink - see overall dimension $\left(^{*}\right.$) $\mathbf{W} \mathbf{1}$ - W2 $=$ Temperature class \mathbf{H}

