MULTIPOINT

GENERAL CHARACTERISTICS

The principle of operation of these instruments is based on the drive of one or more magnetic reed contacts, placed inside of the measuring rod, by one or more floats. The only moving element is the float that moves, for buoyancy, along the measuring rod, this guarantees extreme robustness and a limited need for maintenance.

- Stainless steel - AISI 316
- Up to 6 switch points. - Up to 6 m length.
- Working pressure up to 50 bars depending on the used float.
- Operating ambient temperature $-30 /+55^{\circ} \mathrm{C}$ UR 90%
- Standard working temperature $105^{\circ} \mathrm{C}$
- Executions up to $180^{\circ} \mathrm{C}$ on request.
- Minimum degree of protection IP65
- Built-in temperature sensors, on request. PT - PTC - NTC - Thermostat.
- ATEX $\langle x\rangle$ constructions (See Multipoint $E-$ Multipoint I series)

ce RI,R

FLOATS

Tab. 1

Material

Specific gravity
Contact type
Max N. of contacts
Max. bar

0,75	0,55

Stainless steel - AISI 316

Max. ${ }^{\circ} \mathrm{C}$ - Class
On request

$$
\mathbf{N}=130^{\circ} \mathrm{C}-\mathrm{S} 1 \text { and } \mathrm{S} 2 \text { outputs }
$$

0,6

ELECTRICAL CONTACTS
Tab. 2

TYPE		POWER		VOLTAGE		CURRENT	
		VA	W	AC	DC	AC	DC
SPST	3	70	50	300	350	0,5	0,7
SPST	4	80	80	250	250	1.3	1,3
SPDT	7	60	60	230	230	1	1
SPDT	7D	20	20	150	150	0,5	0,5

ELECTRICAL OUTPUT

Tab. 3

W1 IP65 Housing	W2 IP65 Housing	S1-S2 DIN IP65 Plug	$\begin{aligned} & \text { C1 - C2 - T1 } \\ & \text { Cable - Leads } \end{aligned}$			P1 - P2 Cable-gland	
Max. 5 terminals	Max. 18 terminals	S1 DIN43650 29×29 S2 DIN43650 15×15	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \\ & \mathrm{~T} 1 \end{aligned}$	Cable Cable Leads	$\begin{aligned} & \mathrm{L}=1,5 \mathrm{~m} \\ & \mathrm{~L}=3,0 \mathrm{~m} \\ & \mathrm{~L}=1,5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { P1 } \\ & \text { P2 } \end{aligned}$	Brass IP68 Polyamide IP67
					\div	$\stackrel{\text { \% }}{\text { ¢ }}$	
With heatsink - see ove	nsion (*) W1 - W2	$\mathbf{W} \mathbf{1}-\mathbf{W} \mathbf{2}=$ Temperature class \mathbf{H}	S1-S2-P1 $=$ Temperature class $\mathbf{R} \mathbf{- H}$				

PROCESS CONNECTIONS
Tab. 4

Installation from inside C-P-T output			
06	08	10	15
$1 / 8$ "	$1 / 4$ "	$3 / 8$ "	$1 / 2$ "

All type of floats
All type of thread

Float type	Installation from outside - available thread and flanges						
	$\begin{aligned} & 25 \\ & 1^{\prime \prime} \end{aligned}$	$\begin{gathered} 32 \\ 11 / 4^{\prime \prime} \end{gathered}$	$\begin{gathered} 40 \\ 11 / 2 " \end{gathered}$	$\begin{aligned} & 50 \\ & 2 " \end{aligned}$	FSHX Flange	FSPX Flange	$\begin{gathered} \text { DN } \\ \text { Flange } \end{gathered}$
S29	G	G-C-N	-	-	-	-	-
S32	G	G-C-N	-	-	-	-	-
S41	-	-	G-C-N	G-C-N	-	-	-
S52	-	-	-	G-C-N	-	-	\bullet
S100	-	-	-	-	-	-	-

Male thread

G	C	N
Parallel	Conical	Conical
UNI 228/1	UNI 7/1	NPT

Available materials

S	T
AISI-316	AISI-304
	On request

DN - Available materials

C	S
Steel	AISI-316

FLANGES Dimensions in mm.

DN = UNI - DIN - ANSI Flanges

WIR		Tab. 5			
I	Independent	Separately wired contacts	1	NO	Contacts status in no level conditions
C	Common	Common wired contacts	2	NC	
S	Custom	Contacts wired on customer request	3	SPDT	

SWITCH POINTS

Tab. 6
A Flanged connection
A1 Threaded connection
The switch points $\mathrm{L} 1 \div \mathrm{L} 6$ are measured from the stop of the fitting or flange connection.
General tolerances on switch points $\pm 3 \mathrm{~mm}$.

	Minimum distance in mm.								
	S29		S32		S41		S52		S100
A	20		20		30		35		60
A1	40		40		50		55		-
B	25		25		35		40		70
C	45		45		65		75		125
Contact type	3	7D	3	7D	4	7	4	7	7
Max. N. of contacts	6	4	6	4					6

OPTION - Built-in temperature sensor

On request, it is possible to install a temperature sensor located at the bottom of the rod inside the instrument.

| PT100 - PT1000 | PTC | NTC | TRM (Thermostat) | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EN 60751 - IEC 751 | Resistance at $25^{\circ} \mathrm{C} \leq 500 \Omega$ | Resistance at $25^{\circ} \mathrm{C} 2-5-10-50-100 \mathrm{~K} \Omega$ | $40^{\circ} \mathrm{C} \div 120^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}$ step | |
| Class B - (Class A on request) | Temperature $60^{\circ} \mathrm{C} \div 120^{\circ} \mathrm{C}$ | Precision $\pm 5 \% / \pm 3 \%$ (on request) | Precision $\pm 5 \%$ | Differential $10^{\circ} \mathrm{C} \pm 4^{\circ} \mathrm{C}$ |

NOMENCLATURE

MULTIPOINT S

Request form

External mounting
Internal mounting

