

Instrument Handbook

MK:427 Environmental Noise Sensor

The content of this manual, any illustrations, technical information and descriptions within this document were correct at the time of going to print. Cirrus Research plc reserves the right to make any changes necessary, without notice, in line with the policy of continuing product development and improvement.

No part of this publication may be duplicated, reprinted, stored in a data processing system or transmitted by electronic, mechanical, photographic or other means, or recorded, translated, edited, abridged or expanded without the prior written consent of Cirrus Research plc.

No liability is accepted for any inaccuracies or omissions in this manual, although due care has been taken to ensure that is it complete and accurate as possible.

Accessories supplied by Cirrus Research plc have been designed for use with the instrumentation manufactured by Cirrus Research plc. No responsibility is accepted for damage caused by the use of any other parts or accessories.

In order to take account of a policy of continual development, Cirrus Research plc reserves the right to change any of the information contained in this publication without prior notice.

Produced by Cirrus Research plc, Acoustic House, Bridlington Road, Hunmanby, North Yorkshire, YO14 0PH, United Kingdom.

© Copyright Cirrus Research plc 2022

Reference Number 10/16/MK427/09

Important information	4
First Steps	4
Stage 1	4
Stage 2	
Stage 3	4
Overview	5
MK:427 Microphone Unit System Diagram	7
Mounting Information	8
General Guidance	9
Positioning your MK:427 Noise Sensor	9
Operation	10
External Connections	10
Power Supply	
Isolated Loop circuit	
Verification & calibration of the MK:427	
Routine verification using the electrostatic actuator system	
Explanatory Note – The principle of electrostatic actuation	
Typical time history trace during using the electrostatic actuation process	
Reference Calibration	
Specifications	
Optional Extras	17
Appendix 1 Internal wiring connections	18
Cable Connections	18
Appendix 2 DC Voltage output option	19
Appendix 3 The influence of the background noise level on calibration and verification	
Appendix 2 CE Declaration of Conformity	
Equipment Description	
Warranty Information	22
Cirrus Research Offices	23

Important information

Each MK:427 unit will have its own output levels and electrostatic actuator output levels. Please refer to the factory calibration setup information for details for your specific instrument.

The MK:427 is supplied with the configuration preset to meet those ordered from the factory.

Calpot R1 is referred to in the Reference Calibration section on page 14. This is the only setting that should be altered, if required, by the user during a Reference Calibration.

First Steps

Once you have received shipment of your new MK:427 Noise Sensor unit, we would recommend the following stages to setup and install the equipment.

Stage 1

Understand the contents supplied with the MK:427.

See page 7, MK:427 Microphone Unit System Diagram

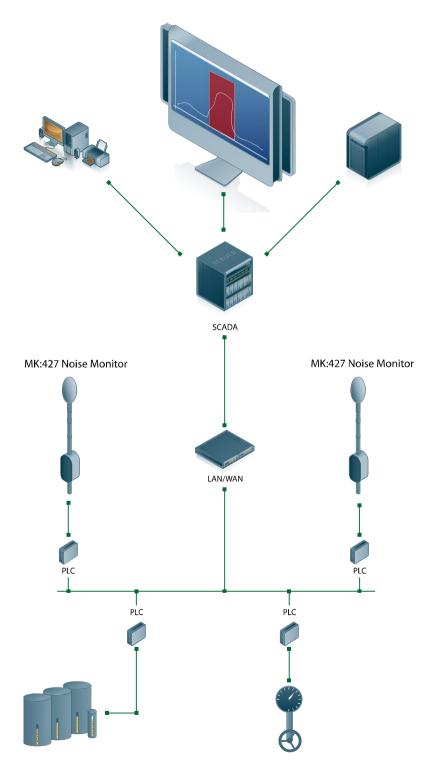
Stage 2

Integrate the unit with your own systems in 'test conditions' to ensure the unit is correctly communicating information and measuring and calibrating effectively.

See Factory Configuration Information Sheet

Page 5, Overview

Page 12, Verification & calibration of the MK:427


Stage 3

Install the MK:427 in a suitable site.

See Page 8, Mounting Information See Page 9, Positioning your MK:427 Noise Sensor

Overview

Thank you for choosing the MK:427 outdoor noise sensor. This high quality outdoor environmental noise microphone system is ideal for integrating with other data logging and external measurement systems.

The mechanical and acoustic design of the MK:427 has been field proven over many years in a range of differing environments worldwide.

The standard version of the MK:427 has a 4-20mA current loop which outputs a current level, expressed in milliamperes that is proportional to the sound level with either a 'Fast' or 'Slow' Time Weighting. The choice of time weighting is a factory set option made at the time of purchase.

The MK:427 has, as standard, an electrostatic actuation system which allows for remote, automatic and regular verification of the system performance to ensure accurate measurements. See the Calibration section of the manual on page 12 for more details.

This manual details a version of the MK:427 with both the 4-20mA loop output and the electrostatic actuator option fitted.

The output is always weighted with the 'A' frequency weighting which is the most commonly used frequency weighting for the measurement of environmental and industrial noise levels.

The 4-20mA current loop output is ideal for integration to many process measurement and control systems where your own system loggers and software can provide an accurate representation of the 'live' noise levels and also store data.

Your own interface system will need programming with a simple formula which is outlined on your Factory Configuration Information sheet.

For Example:

For a unit with a range of 34 to 104 dB

Sound Pressure Level

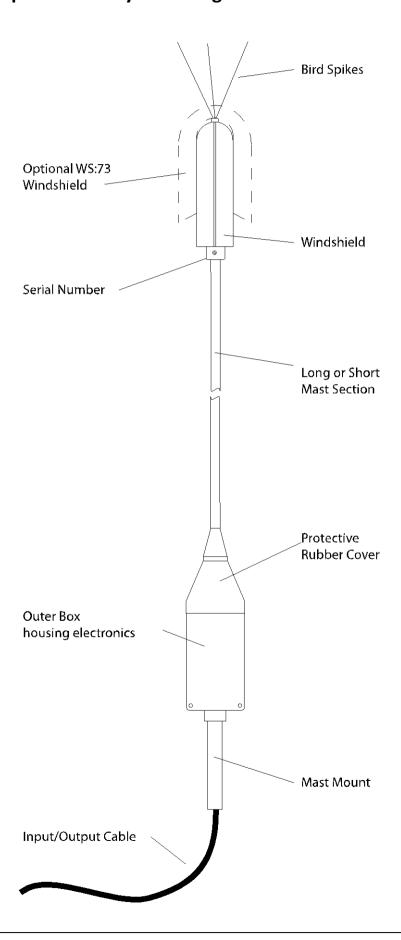
$$dB = (10 \times I)-10$$

(Where I is the output current in mA)

Therefore, in this example an output current of 7.23mA would represent a noise level, L_A, of 62.3dB(A) as shown below:

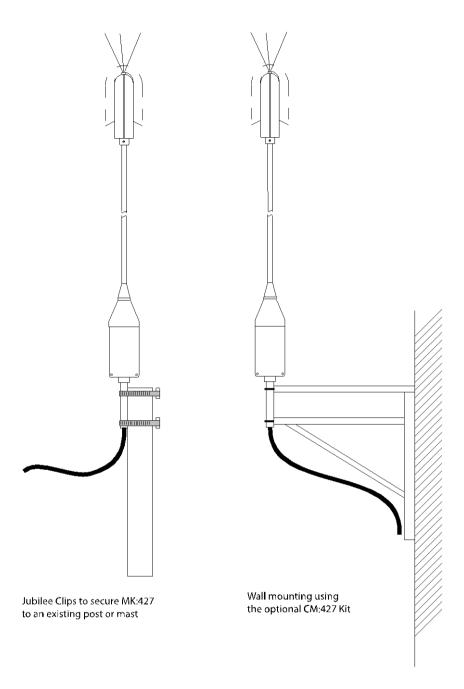
$$dB(A) = (10 \times 7.23) - 10$$

$$dB(A) = 72.3 - 10$$


$$dB(A) = 62.3$$

Please check with our technical department if you need confirmation as to the settings of your equipment or if you need any other technical guidance.

Tel: + 44 1733 667100


email: sales@cirrus-environmental.com

MK:427 Microphone Unit System Diagram

Mounting Information

Examples of mountings

The unit is supplied with a standard mounting kit to enable the unit to be fixed to a pole or similar.

3 x Jubilee clips

2 x U-Bolts with washers & nuts

The optional CM:427 mounting kit can be used to mount the MK:427 onto a building or other fixed structure.

General Guidance

Positioning your MK:427 Noise Sensor

Every site and application is different but here are some basic guidelines for effective positioning of your Noise Sensor:

- It is usually worth conducting a noise survey, or referring to measurement data from a recent noise survey to understand the noise profiles for the area.
- Install the sensor at a location nearby to where the environmental noise is most likely to cause annoyance to neighbouring residential areas or other sites.
- Legislation often specifies where measurements should be made, for example at property boundaries or at a complainant's property.
- Try to mount the unit away from obstacles and building walls.
- The microphone should always be a minimum of 1.2 1.5m above the ground level.
- Avoid, where possible, overexposed areas where high wind speeds will affect the noise level readings.

Operation

External Connections

External connection to the MK:427 is made via the supplied 10m cable with the following wiring connections:

Power Supply

Red & Orange: Nominally +12VDC

Black & Green & Braid & Blue: Power Ground (0V)

Notes:

The nominal power supply voltage is +12VDC.

The MK:427 can operate with a power supply within the range of +9VDC to +36VDC

The maximum current for normal operation is 75mA.

The power supply for the unit must be independent of the isolated loop circuit.

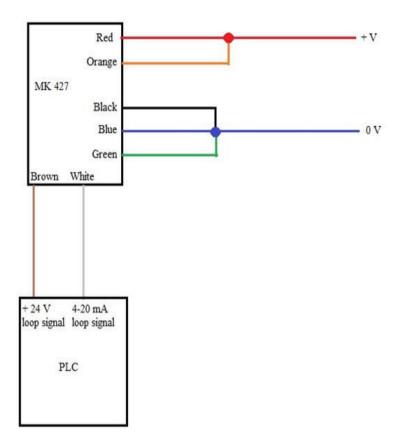
Isolated Loop circuit

White: Loop output Brown: Loop input

Notes:

The nominal output current is 0.1mA/dB over the range of the instrument.

The maximum allowable loop voltage is 30V.


Actuator control

The electrostatic actuator is

Yellow: Any voltage of between +5V to +12V = Actuator on

Any voltage of between 0V to +0.3V = Actuator off

Green: Ground (0V). Connect to power supply ground (0V)

If the installation requires that the factory supplied 10m cable must be replaced then please refer to Appendix 1 Internal wiring connections for the connection details onto the internal PCB.

Verification & calibration of the MK:427

The standard MK:427 unit is fitted with an electrostatic actuation system that allows the output of the system to be verified by generating a known sound level.

The system can also be calibrated by using a reference acoustic calibrator and this process is described on page 14.

Please also refer to the section on page 20, **Appendix 3 The influence of the background noise level on calibration and verification**.

Routine verification using the electrostatic actuator system

To carry out a routine verification using the electrostatic actuator system, the MK:427 must have all of its connections, as specified in the section **External Connections**.

To activate the electrostatic calibration system, apply any voltage of between +5v and +12v level to the **yellow coloured wire.** The 0v of this voltage source must be connected to the **green coloured wire**.

This voltage needs to be applied during the entire actuation period.

We would recommend waiting for around 20 seconds to ensure the electrostatic actuation system has time to settle properly before reading the value electrically.

When this voltage level is applied, the actuator 'excites' the microphone to a specific level, which is shown on the Factory Configuration Information sheet that is supplied with your MK:427.

The output level from the MK:427 will increase to the calibration level which can be used to calibrate your data logging system.

To end the calibration process, return the voltage on the **yellow wire** to less than **+0.3v**.

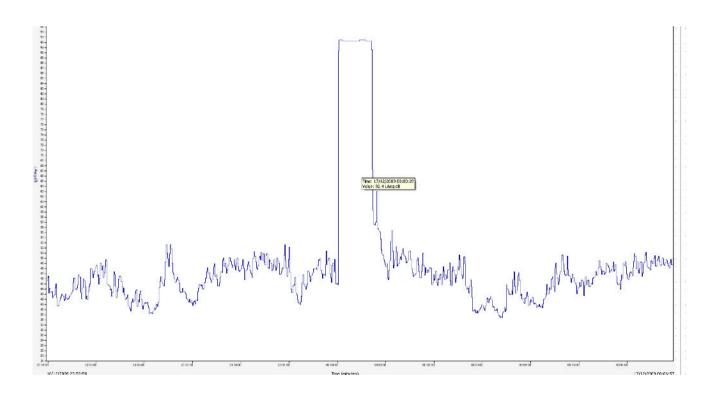
The electrostatic actuation level will vary between different MK:427 sensors. Refer to page the Factory Configuration Information sheet for the exact output levels for this instrument.

Explanatory Note – The principle of electrostatic actuation

In an electrostatic actuation system, the level at the microphone membrane level is determined by the distance between the actuator plate and the microphone capsule membrane, and will vary between all units.

Once the output calibration current level has been established this should be within ±0.5dB of the designated level given on the Factory Configuration Information sheet.

If the level has varied to a level that is unacceptable for your application, you should program a correction into whatever data logging/software system that you are using to receive the analog signal from the MK:427.

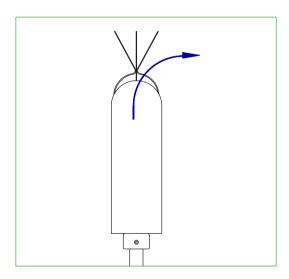

Example

Actuation output measured = 89.9 dB Actuation level on Factory Configuration Sheet = 90.6 dB

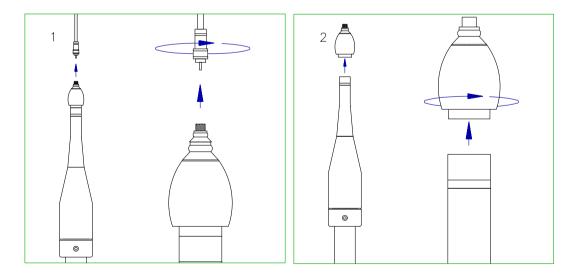
So, difference between output and factory tested setting = 0.7dB or 0.7/10 = -0.07mA

Typical time history trace during using the electrostatic actuation process

The picture below shows the effect of the actuation process upon the output level produced by the MK:427.

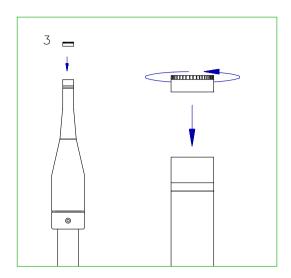

Reference Calibration

The output levels of the MK:427 can be adjusted using a Cirrus CR:515 or CR:514 Acoustic Calibrator as a reference source with the electrostatic actuator providing for routine verification.

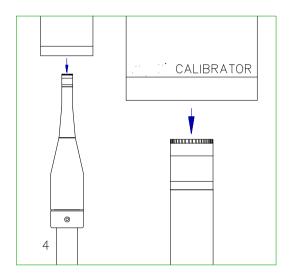

Please note that this procedure should not be carried out unless the overall calibration of the system needs to be verified and is included in this manual for reference only.

To create a reference calibration follow the steps below:

1. Remove the Windshield from the microphone unit.



2. Carefully unscrew the electrostatic actuator unit from the microphone capsule



Care must be taken at this step as the diaphragm of the microphone capsule will be exposed and is easily damaged.

3. Attach the microphone grill to the microphone capsule

4. Connect the acoustic calibrator and select the 94dB level.

5. Adjust the calibration level using Calpot R1 for the output current given in the table below.

This provides a reference calibration level so that the current output is now proportional to the noise level. The current will depend upon the range of the instrument.

Range	Calculation	Current for 94dB Calibrator
74 – 144 dB	dB = (10 x I) + 30	6.4mA
64 – 134 dB	$dB = (10 \times I) + 20$	7.4mA
54 – 124 dB	dB = (10 x I) + 10	8.4mA
44 – 114 dB	dB = (10 x I)	9.4mA
34 – 104 dB	dB = (10 x I) – 10	10.4mA
24 – 94 dB	$dB = (10 \times I) - 20$	11.4mA

Example

For the range of 34 to 104dB

 $dB = (10 \times I) - 10$, where I is the current output in mA.

The current output for a known dB level is therefore

$$I = (dB + 10) / 10$$

- 6. Carefully remove the acoustic calibrator
- 7. Remove the microphone grill
- 8. Re-attach the electrostatic actuator and cable
- 9. Activate the electrostatic actuator system by applying a voltage of between +5v and +12 to the **Yellow** wire. The **Green** wire should be connected to 0V of this voltage source.
- 10. Record the output current across the loop to obtain the actuator output level

Please note that the level produced by the electrostatic actuator is dependent upon the position of the actuator drive plate above the microphone grill and will vary slightly depending upon how tightly it has been screwed down.

Very small changes in position can produce significant differences in the level produced by the actuator system.

The actual level produced by the electrostatic calibration system is not important, only that it produces the same reference level each time.

Example

The level produced by the actuator is calculated from $dB = (10 \times I) - 10$ for an instrument with the range of 34-104dB, i.e. an output current of 8.75mA corresponds to an actuator level of 77.5 dB(A)

Barometric pressure and outside temperature will have small effects on the actuator level and so small variations up to 0.5dB are not uncommon between day and night conditions or between low and high pressure days.

Specifications

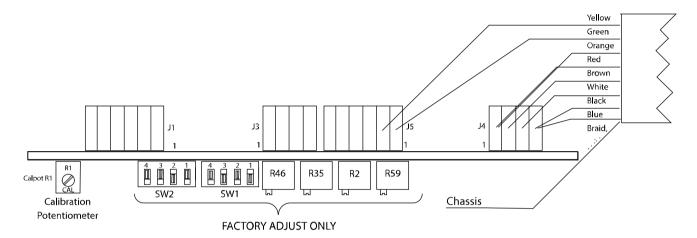
Current Loop Output: See the Factory Configuration Information sheet

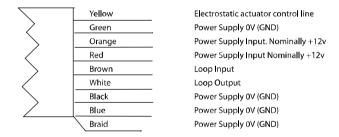
Minimum loop voltage +10V

Maximum loop voltage +30V

External Power See the Factory Configuration Information sheet

Optional Extras


Winter Windshield: WS:73


Wall mounting Kit: CM:427

Appendix 1 Internal wiring connections

Please note that the position of the following potentiometers and switches in the diagram below are for **indication only** and may be different on a specific MK:427 unit depending upon the configuration of the unit:

R59, R2, R35, R46, SW1, SW2, R1

Cable Connections

Yellow Electrostatic actuator control line

Green Power Supply OV (GND)

Orange Power Supply Input. Nominally +12v Red Power Supply Input Nominally +12v

Brown Loop Input White Loop Output

Black Power Supply OV (GND)
Blue Power Supply OV (GND)
Braid Power Supply OV (GND)

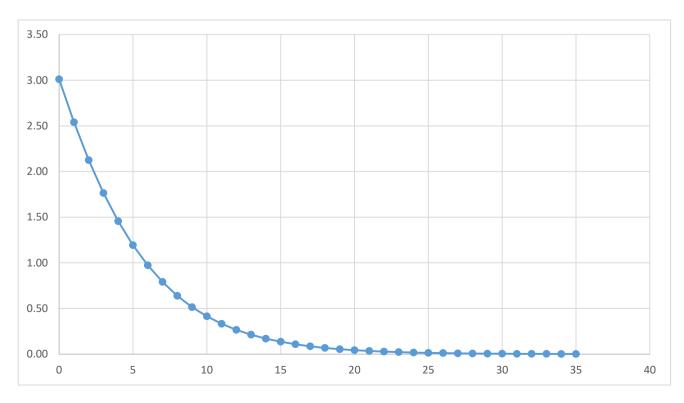
Appendix 2 DC Voltage output option

To convert the 4-20mA output current to a DC voltage output, connect LOOPOUT to the Loop Power Input Ground via a 100ohm resistor for a voltage across the resistor of 10mV/dB.

Appendix 3 The influence of the background noise level on calibration and verification

High background noise levels can affect the calibration of any noise measurement system.

It is recommended that both the routine verification and reference calibration are carried out in environments where the ambient noise level is more than 15dB below that of the calibration level.


The electrostatic actuation system will typically produce a level between 85dB and 95dB. To ensure that the routine verification and reference calibration can be carried out successfully, it is recommended that these are done in environments where the ambient noise level is less than **70dB(A)**

As an example, if the electrostatic actuation system is generating a level of 90dB and the ambient level is 85dB, the resulting level will be 91.1dB. It is also likely that the background noise level will vary and so this will result in an unstable output level.

If the electrostatic actuation system is generating a level of 85dB and the background noise level is 75dB, the resulting level will be 85.4dB.

If the electrostatic actuation system is generating a level of 85dB and the background noise level is 70dB, the resulting level will be 85.1dB.

The chart below shows difference between two noise levels across the x axis and on the y axis the level that should be added to the higher value. This shows the effect of the background noise upon the calibration level. As the difference reaches 15dB, the effect becomes insignificant.

Appendix 2 CE Declaration of Conformity

Cirrus Research plc Hunmanby UK CE Certificate of Conformity

Manufacturer: Cirrus Research plc

Acoustic House, Bridlington Road Hunmanby, North Yorkshire, YO14 0PH

United Kingdom

Telephone +44 1723 891655

Equipment Description

The following equipment manufactured after 1st January 2009

MK:427 Environmental Noise Microphone

Along with standard accessories

According to EMC Directives 89/336/EEC and 93/98/EEC

meet the following standards

EN 61000-6-3 (2001)

EMC: Generic emission standard for residential, commercial and light industrial environments.

EN 61000-6-1 (2001)

EMC: Generic immunity standard for residential, commercial and light industrial environments.

Signed Dated 1st April 2022

Martin Williams Chief Engineer

Warranty Information.

- 1. Every new product is provided with a 12-month no-quibble warranty. This covers everything we provide against failure, poor workmanship and accidental damage.
 - NB European Union law states a product has to be fit for purpose for 24 months after purchase. This two-year period covers failure and poor workmanship only.
- 2. If the product is calibrated by Cirrus Research or an authorised calibration and service centre, then the initial 12-month warranty is extended by a further 12 months, with the same conditions, for up to 15 years in total.
- 3. If a product has not been calibrated annually by Cirrus Research or an authorised calibrationand service centre, then you may buy back into the warranty scheme for a small fee, plus the cost of calibration. This can only be done once during the life of the product.
- 4. If a microphone capsule fails under warranty and is physically damaged, we will replace it with a refurbished capsule.
- 5. If you don't wish to have a refurbished capsule, then you can trade in your damaged capsule for a new one, which will incur a fee.

Cirrus Research Offices

The addresses given below are the Cirrus Research plc offices. Cirrus Research plc also have approved distributors and agents is many countries worldwide. For details of your local representative, please contact Cirrus Research plc at the address below. Contact details for Cirrus Research authorised distributors and agents are also available from the Internet Web site at the address shown below.

United Kingdom

Cirrus Research plc Acoustic House Bridlington Road Hunmanby North Yorkshire United Kingdom YO14 0PH

Tel: +44 (0) 1723 891655
Email: sales@cirrusresearch.com
Website: www.cirrusresearch.com

Germany

Cirrus Research GmbH Arabella Center Lyoner Straße 44 - 48 60528 Fankfurt am Main Deutschland

Tel: +49 (0) 69 95932047

Email: vertrieb@cirrusresearch.com Website: www.cirrusresearch.de

France

Cirrus Research France S.A.S. 679 avenue de la République 59800 Lille France

Tel: +33 (0) 633 976 626
Email: infos@cirrusresearch.fr
Website: www.cirrusresearch.fr

